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Uncertainty in Climate Change Projections 

This is a literature review based on peer-reviewed academic papers and has been written 
in response to an ONR request and follows ONR-RRR-055. 

1. Introduction 

Climate change projections are crucial for policy planning surrounding mitigation and adaptation 

strategies, as well as engineering design. Climate models are the prime tool for generating the 

information needed to create climate change projections. Multi-model ensembles of climate 

models are forced with scenarios of future atmospheric composition which includes greenhouse 

gases, and from these ensembles the emerging data are analysed to establish directions and 

amplitude of climate change for regions. In many cases further numerical tools are required to 

produce bespoke projections, for example from hydrological models in relation to flooding. These 

steps are necessary where the spatial scale of the climate change impact is much smaller than 

the scale that is resolved by the climate model itself. 

Uncertainties accrue at every step in the process of producing climate change projections (Cox 

and Stephenson 2007). The size of the uncertainties and their relative importance depend 

heavily on the time scale of prediction, the variable for which prediction is being made and the 

region in consideration.  

The kinds of uncertainties involved can be classified into:  

• inherent climate model uncertainties;  

• climate model uncertainties which are known to depend on issues with climate models 

that can be circumvented given sufficient resource;  

• future emission scenarios;  

• uncertainties involved in parameterisation of poorly-modelled processes 

Other uncertainties include those where climate mode outputs are used to drive models of earth 

surface processes (Harrison et al. 2019). 

Successful climate projections at small spatial scales which are useful for policymakers assume:  

1. that the uncertainties in climate projections are well known and knowable  

2. that the impact of climate change on Earth Surface Systems (ESS) is predictable at those 

scales,  
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3. that climate model uncertainty and system response uncertainty is fully appreciated by 

policymakers and end-users.  

In this report, we start by assessing future emission scenarios since they are largely independent 

of climate model uncertainty (Section 2). The report progresses to consider issues about 

uncertainty inherent to climate or our understanding of climate also independent from models 

(Section 3). Section 4 deals with climate model uncertainty. Section 5 considers ways in which 

climate model uncertainty is dealt with.  

General Issues:  

Difference between boundary condition values and initial condition values.  

There are many types of uncertainty and several of these relate conceptually to the distinction 

between so-called boundary value problems and initial value problems (see Pielke 1998; Rial 

et al. 2004; Giorgi 2005). Boundary value problems (for example atmospheric greenhouse gas 

concentrations) are those which set the parameters driving the evolution of the system. 

Uncertainties arise when the structural or architectural elements of the system are incompletely 

specified and the start and endpoints of system evolution are difficult to constrain. Initial value 

problems on the other hand, occur when the evolution of the system is driven by the precise 

specification of the system. Uncertainty in this evolution concerns the exact disposition of the 

internal states of the system. The differences between boundary value problems and initial 

value problems are one of scale and we must recognise that the small-scale dynamics of a 

system (e.g., weather) may be effectively decoupled from its large-scale average behaviour 

(e.g., climate). Essentially, we can see this within the context of chaotic and emergent 

structures in a dynamically-evolving system (e.g., Harrison 2012; Daron and Stainforth 2013).  

 

 

Use of ensembles. 

 

It has been long known that GCMs are better at simulating temperature than precipitation and 

that no single model is able to represent trends on a spatially-consistent basis (Crawford et al. 

2019). As a result, ensembles of climate models are regularly employed as it is known that a 

multi-model ensemble mean (weighted or unweighted) is superior to any individual model. 

Climate model ensembles can be constructed in several ways, including by using a range of 

different models forced by emissions scenarios, or by one model run many times with 

perturbations in the model parameters.  A common way to generate an ensemble is through 

sets of initial conditions containing small variations (e.g. perturbed physics ensembles) that 
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lead to different subsequent climate trajectories. However, it is often assumed that all models 

are of equal value (called model democracy) and this means that models are unweighted in the 

final assessments and decisions have to be made about how to construct multi-model 

ensembles and how to assess model ‘weights’ (i.e. are some models to be given more 

credibility in the construction of the multi-model ensemble?). If so, this can be achieved using 

linear regression (e.g. Kharin and Zwiers 2002), different weighting techniques (e.g. Haughton 

et al. 2015); historical performance (e.g. Brunner et al. 2020) and Bayesian techniques (e.g. 

Massoud et al. 2023.  

 

2. Future Emission Scenarios 

There is no known method for the objective generation of data sets that specify future emissions 

of greenhouse gases and other important gaseous constituents of the atmosphere such as 

aerosols. Such emissions depend on socio-economic developments in the 21st century and 

beyond which cannot be known given the current state of social-science theory and its poor 

predictive capability. However, data on likely future emissions are vital to any climate model 

simulation aimed at creating projections of future climate. To overcome this impasse, scenarios 

of future emissions have been created each of which maps onto a particular storyline of how 

future decades might unfold. These scenarios have changed for each of the last three rounds of 

Coupled Model Intercomparison Project (CMIP) modelling exercises. These are the 

internationally organised efforts to coordinate model experiments across the world’s modelling 

centres. CMIP6 (Eyring et al. 2016) used Shared Socio-economic Pathways (SSPs; O’Neill et 

al., 2016). These scenarios show that different levels of radiative forcing can be achieved by 

different combinations of GHG, atmospheric aerosol loadings and land-use scenarios (e.g., 

Amann et al. 2013).  

The key scenarios are as follows: 

1. scenarios with high and very high GHG emissions (SSP3-7.0 and SSP5-8.5) and CO2 

emissions that roughly double from current levels by 2100 and 2050 respectively; 

2. scenarios with intermediate GHG emissions (SSP2-4.5) and CO2 emissions remaining 

around current levels until the middle of the century; 

3. scenarios with very low and low GHG emissions and CO2 emissions declining to net zero 

around or after 2050, followed by varying levels of net negative CO2 emissions (SSP1-1.9 

and SSP1-2.6). 
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In previous CMIP exercises, different scenarios were used. In CMIP5, four Representative 

Concentration Pathways (RCPs) namely RCP 3-PD2; RCP4.5; RCP6 and RCP 8.5 replaced the 

4 SRES (Special Report on Emission Scenarios) portfolio which underpinned CMIP3 (There was 

no CMIP4).  

CMIP output underpins the respective Intergovernmental Panel on Climate Change (IPCC) 

reports as follows: CMIP3-AR4; CMIP5-AR5; CMIP6-AR6.  

Emission scenarios are vastly divergent covering possible futures that include the aggressive 

use of fossil fuels in future decades against the rapid adoption of green technologies. The 

emission scenarios are a prime source of uncertainty in climate change projections. For 

projections relating to global decadal mean annual temperature, which is the most basic metric 

of climate change, emission pathways dominate uncertainty especially over multidecadal to 

centennial timescales, and this uncertainty range increases into the future. For other variables, 

such as precipitation, the impact of scenario uncertainty is offset by climate model uncertainties 

(Figure 1). 

Skill in predictions 

Model skill varies considerably with location and the metrics of interest. For instance, skill for 

multi-year to decadal precipitation forecasts is generally much lower than for temperature. In 

contrast, predictions of near-surface temperature are relatively skilful over specific regions; for 

instance, over the North Atlantic (e.g. Boer et al., 2013; Yeager and Robson, 2017), and this is 

associated with the predictability of the North Atlantic subpolar gyre allowing changes in ocean 

conditions to be predicted several years into the future. 

3. Inherent Climate System Uncertainty 

The climate system is an extremely complex fluid-solid system that involves energy, mass and 

momentum exchanges in four dimensions continuously. Within that system there will be non-

linear interactions whose behaviour will be unpredictable no matter how well developed the 

climate models become (and this can be reduced to an issue of chaotic and non-linear processes 

(see Prigogine and Nicolis 1985). Part of the unpredictability relates to the sensitivity of the 

climate system to the starting point from which it evolves – often called the sensitivity to initial 

conditions. This sensitivity is a prime reason why weather forecasts lose skill rapidly after a few 

days but are also relevant on climate timescales (see Figure 1) particularly in relation to sub-

surface ocean conditions. On climate timescales they include changes in the modes of variability 
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such as El Nino Southern Oscillation (ENSO), the North Atlantic Oscillation (NAO) and Atlantic 

Multi-decadal Variability (AMV). 

Internal variability of the climate means that it is difficult to identify forced climate signals over 

short space and time scales (e.g., Hawkins and Sutton, 2009; Lovenduski et al., 2016; Suárez-

Gutiérrez et al., 2017). The approach generally adopted to counter the sensitivity to initial 

conditions is to run ensembles of model experiments where the initial conditions are different 

from one experiment to the next. 

Thus, even in an unforced world (one without anthropogenic radiative forcing) there would still 

be uncertainty in projecting future climate because of the operation of natural and internal climate 

variations, many of which are unpredictable and stochastic. These include volcanic eruptions 

which emit large amounts of aerosols into the troposphere and stratosphere; and changes in 

solar activity which changes Total Solar Irradiance (TSI). These forcings on the climate system 

cannot be anticipated although the impacts of these on future climate has been considered (e.g., 

Maycock 2016; Bethke et al. 2017). There may be ways in which climate variability interacts with 

and influences radiative forcing. For instance, increased volcanic activity is hypothesised to 

follow the melting of large ice masses as isostatic rebound perturbs ther earth’s crust, and may 

also influence the variability of Atlantic climates. 

 

4. Climate Model Uncertainty 

This section provides details on the uncertainty which stems from the capability of climate 

models. 

4.1 Climate model types  

Climate models have been in development for at least the last 80 years and studies on the 

underlying physics for at least twice as long. Climate models are based on fundamental physical 

laws (e.g., energy, mass, and momentum conservation) and subdivide the Earth surface, oceans 

and atmosphere into 3D grids. The processes are discretised within grid squares and the 

equations governing the processes are integrated through time with the relationship between the 

time step in each integral and the grid square specified to rule out numerical instabilities.  

The initial impetus to develop numerical models of the atmosphere came from the imperative of 

weather forecasting. Forecast models which specify the physics behind weather systems were 
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available to be adapted into climate models once the climate change issue became a line of 

research inquiry. 

Components of the climate system, important on longer climate change timescales, including 

the role of oceans, were added to the model structure. By the 1980s models were relatively 

simple, portraying oceans with no currents and fixed atmospheric cloudiness (NRC 2012). 

Over the past few decades, the resolution of the models and the range of physical processes 

that are now included in the models has increased enormously (Figure 2). In more recent 

decades Global Climate Models (GCMs) have been developed by a number of modelling 

teams, and the outputs from these have been used extensively in IPCC reports since 1991. 

Much effort has also gone into developing the computer resources to run sophisticated climate 

models, especially as multiple simulations (ensembles) are now routinely run to evaluate model 

and initial condition uncertainty. The data sets bound up with climate change experiments are 

among the largest data sets in existence. 

The size of grid squares defines the model resolution. In CMIP3 (developed for AR4; 2007), the 

horizontal typical resolution was about 250 km in the atmosphere and 1.5◦ in the ocean. For the 

2013 AR5, the resolution of CMIP5 models increased to 150 km and 1◦ in the ocean (Stocker et 

al. 2013). Higher-resolution simulations down to 50 km in the atmosphere and 0.25◦ for the ocean 

are now performed at a few research centres (e.g., Davini et al. 2017). The oceans are typically 

subdivided into 30-60 layers and the atmosphere into 30-40 layers. IPCC AR5 (2013) GCMs 

have increased their resolution from about 50 to 25km since IPCC AR4 (2007; Haarsma et al. 

2016) with Regional Climate Models (RCMs) operating at 10km or better resolution (e.g., Kendon 

et al 2012). 

It follows that there is an array of climate model types which reflect the complicated history of 

their development which is superimposed on the urgent need to create better climate models for 

the purposes of climate change assessments (e.g., Kravtsov et al. 2018; Ridder et al. 2021). 

Two prime types of numerical models used in climate change experiments are coupled (ocean-

atmosphere) climate models, sometimes referred to as AOGCMs and Earth System Models 

(ESMs).  

The key difference between AOGCMs and ESMs is that ESMs include a carbon cycle which 

typically includes interactive vegetation. ESMs are more realistic in terms of the processes that 

they include but with that comes greater degrees of freedom available to the model which often 

is expressed in divergent simulations of the future. In addition, in order for the models to run 
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sufficiently quickly, the spatial resolution of ESMs is coarse compared with AOGCMs. Regional 

climate models are a third key category. Global Climate Models (GCMs) are known to be of 

limited accuracy in predicting climate change impacts at small scales, including regional climate. 

Regional Climate Models (RCMS) have therefore been developed to allow climate projections 

down to scales of 25-50 km (see projects like PRUDENCE (Christensen et al. 2007)); down to 

10km (Kendon et al. 2012); and Convection Permitting Models down to 2.2km in UKCP18 

(Kendon et al. 2021) and 3km for Sub-seasonal to seasonal forecasts (e.g. Pal et al. 2019). 

Convection Permitting Models have been shown to have a much greater fidelity in simulating 

previously challenging climate systems or states which are dominated by thunderstorm systems. 

 

4.2 Climate Model Deficiencies: missing elements in models 

Climate models are without doubt one of the greatest scientific triumphs of the last one hundred 

years. The improvement in general numerical model capability is profound. Figure 3 illustrates 

this improvement between the early 1980s and present, which sees numerical model capability 

increasing linearly for several decades. This capability can only be demonstrated where the 

actual values for prior states of the atmosphere are known which is not the case for climate 

change over the course of the 21st century. Nevertheless, reducing the behaviour of the 

atmosphere to a set of equations which can be solved computationally exposes known elements 

of the climate system which are either not properly understood and therefore not sufficiently 

specified or which are reasonably understood but which cannot be properly specified in the 

models.  

Given the long timescales over which the future climate will evolve, it is rarely possible to 

evaluate the accuracy of the model used to describe the system dynamics. Modellers have 

divided such issues into model inadequacy and model uncertainty (Stainforth et al. 2007a, b). 

They argue that model inadequacy reflects the degree to which models capture all the physical 

processes which are relevant to the system under study (Stainforth et al. 2005). There are at 

least three problems associated with this. First, we can have only partial understanding of all the 

processes that may be relevant for system development, especially those that occur over long 

timescales. Second, our understanding of small-scale processes must involve a form of 

parameterization, where the scale of model analysis is too coarse to capture all the relevant 

processes. Our understanding of how such small-scale processes affect the large-scale 

evolution of the system is, again, partial. Even if our model accurately described past system 

evolution, there is no guarantee that future change will similarly be defined. Third, because of 
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the scale of enquiry adopted, there may be elements of the system behaviour that follow from 

the physical processes driving the model, but which are not represented at all. As a 

consequence, our model only gives us a partial account of real-world processes and system 

behaviour, and therefore enables only a partial account of system evolution. 

 

4.3 Deficiencies and uncertainty associated with model parameterisation.  

Numerous processes important to the climate system occur at scales which are much smaller 

than the model grid boxes. These have to be presented via variables which are explicitly resolved 

– a process called parameterisation. Parameterised processes include convection, radiation, 

clouds, aerosol physics and dynamics in the boundary layers (e.g., Neumann et al. 2019; Hu et 

al. 2020). Other processes also have to be parameterised that occur at broader scales, but which 

are not yet resolved in climate models and these include the operation of large-scale gravity 

waves (e.g., Geller et al. 2011), large-scale ocean processes (Ferrari and Ferreira 2011), and 

land surface/boundary layer interactions.  

Recently, high resolution simulations where model grid boxes are sufficiently small to represent 

processes such as convection, explicitly have allowed parameterisation of convection to be 

switched off in the models. Comparison between the version of the model with parameterised 

convection and versions of the model in which convection is permitted allows the error due to 

parameterisation to be quantified. There is clear improvement in the ability of models without 

parameterisation over those with parameterisation (e.g., Senior et al., 2021). However, running 

models with very high resolution sufficient to represent processes directly requires exponentially 

more computing power. Such computing power is not yet available to run global simulations for 

long enough to permit climate change experiments over many decades at the global scale. Were 

such computing power to become available, then not all parameterised processes could be 

dispensed with because there are currently no known equations in physics which specify a 

number of key processes. Many of the relationships specified in the parameterised processes 

are conditioned by empirical constants that are not well grounded in theory. An approach to deal 

with this kind of uncertainty is to run a climate model several times with differing constants 

specified for those values in empirical relationships that cannot be strongly defended in any 

theory. This approach encompasses perturbed physics ensembles (e.g., Sexton et al., 2012; 

Regayre et al., 2018).  
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Model uncertainty also arises because there are important drivers of future climate which cannot 

yet be modelled. These include some elements of landscape change such as ice sheet dynamics 

which are crucial to estimates of sea level rise, global albedo estimates and ocean circulation 

changes. 

4.4 Uncertainties in specific features or components of the Earth System 

This section discusses some ESS where climate model uncertainty materially reduces our 

understanding of the future evolution of these systems and, therefore, their impacts.  

a) Sea level and ice sheet dynamics

Predicting the amount and rapidity of future sea level rise is a major issue for planners and risk 

managers. New infrastructure is being built near sea level (e.g., new build nuclear power sites) 

and risk managers are being increasingly asked to assess high magnitude and low probability 

sea level rise (e.g. van de Wal et al. 2022) and extreme climate and weather events with low 

probabilities ( (i.e., 1:10,000 events). Increasingly valuable resources are at risk if rising sea 

levels change the magnitude and frequency of storm surges and hurricane landfalls.  

Considerable modelling resources are being devoted to improving the accuracy of sea level rise 

models. Most of the present rise in global sea levels is currently due to the thermosteric rise, 

caused by expansion of the oceans as they have warmed. However, by the middle of the 21st 

century it is estimated that the dominant contribution will be from melting of the major ice sheets 

in Greenland and Antarctica (Rignot et al. 2011; Oppenheimer et al. 2019; Hanna et al. 2024).  

IPCC AR4 (2007) underestimated future sea level rise because modelling of the dynamic 

behaviour of the ice sheets was incomplete. Since then, there have been advances in 

understanding ice sheet dynamics and better parameterisation of ice sheet models (e.g., Pattyn 

et al. 2012), although these still fail to capture crucial physical processes (Drouet et al. 2013; 

Pattyn and Durand 2013; Bradley and Hewitt 2024). IPCC AR5 WG1 has estimated that mass 

loss from the Antarctic ice sheet between 2002-2011 was 147 Gt/yr, and loss from the Greenland 

Ice Sheet (GIS) has increased to 25 Gt/yr over the same period. Evaluating whether these rates 

are part of an accelerating trend is of crucial importance and there are major challenges in 

modelling how ice sheet dynamics will evolve and how rapidly.  
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Future assessment of the dynamic evolution of the major ice sheets is hampered by a lack of 

understanding of the physical processes driving ice sheet melting and collapse. These physical 

processes include: the role of algae and aerosols in changing ice sheet albedo; the stability of 

grounding lines; the ways in which ice shelf and ice tongues calve and break up, the implications 

of this on the discharge of inland ice streams as debuttressing effects increase with ice shelf 

removal, and the role of meltwater in the subglacial zone of ice sheets (e.g. Davis et al. 2023).  

Given our uncertainties in how ice sheets will behave in a warming world, there are clear 

advantages to increasing current understanding of the physical processes that need to be 

parameterised in climate models. For instance, recent advances have been made in 

understanding the migration of grounding lines (the junction in a marine-terminating ice sheet 

between the grounded ice and the floating ice shelf) as this is a crucial factor in explaining how 

ice sheets will respond to warming and sea level rise.  

Ice sheet models with resolutions of 10-20km generally fail to reproduce grounding line migration 

(Pattyn et al. 2012) and much smaller resolutions may be required. Solving this requires either 

larger computational resources, or new modelling techniques but challenges in accurately using 

these to predict future sea level rise still remain (Drouet et al. 2013; Freer et al. 2023).  

More recently, further debates have focused on the ways in which ice sheet and ice shelf 

processes have been parameterised. For instance, the debate about the role of Marine Ice Cliff 

Instability (MICI) and Marine Ice Shelf Instability (MISI) in driving ice sheet mass balance and 

sea level rise is currently unresolved (see Bassis and Walker 2012; DeConto and Pollard 2016; 

Edwards et al. 2019; Crawford et al. 2021; Schlemm and Levermann, 2021). In essence, 21st 

century global sea level rise projections exceed 1m under some MICI methodological choices 

(Edwards et al. 2019) but with wide probability intervals, and this hampers policy-relevant 

decisions. Similarly, the ways in which the basal regions of ice sheets interact with the 

surrounding ocean impacts ice sheet stability over decadal and centennial timescales (e.g. 

Pattyn and Morlighem 2020).  Observations of the processes involved in ice sheet instability are 

clearly important to both developing and evaluating ice sheet models. Observations of ice sheet 

dynamics are difficult to obtain because the processes occur in extremely remote locations and 

often at depth beneath the ocean.  

b) Atlantic Meridional Overturning Circulation  

The Atlantic Meridional Overturning Circulation (AMOC) is the key circulation system of the 

Atlantic Ocean producing the conditions that warms northwest Europe. It moves around 20 
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million cubic meters of water per second (20 Sv). Warm surface water moves north, sinks in the 

North Atlantic and returns south as a cold deep current). In the past the AMOC has transitioned 

to a weak circulation mode (switched off) on several occasions and on these occasions, this has 

brought rapid and extreme cold to many parts of the globe, especially to North West (NW) Europe 

(e.g. during the Younger Dryas period between 12,900-11,700 years BP; Cheng et al 2020).  

The AMOC is a clear example of a multi-stable component of the Earth system with two 

probable stable states: strong and weak circulation modes (Caesar et al. 2018; Bonnet et al. 

2021). However, its sensitivity to external and internal dynamics means that modelling its future 

behaviour is crucial if we are to assess future climate change in the North Atlantic. Since the 

1980s, concerns have been raised that the AMOC could undergo similar weakening or 

cessation of flow in response to global warming, although data at the time were lacking. 

Observations show a consistent ‘cold blob’ in the North Atlantic south of Greenland, and this is 

supported by climate model projections (Keil et al. 2020). The position of the ‘cold blob’ is 

important as it probably influences the behaviour of the summer jet stream, may enhance 

southerly wind flow and increase the likelihood of heat waves, and potentially increase the 

strength of winter storms.  

From 2004 the RAPID-AMOC project has continuously monitored the AMOC, but the data set is 

too short to distinguish between long-term trends and short-term variability. It does show that 

variability is higher than thought, probably driven by wind forcing. Research has argued that a 

weakened AMOC produces reduced summer precipitation and increased windstorms in NW 

Europe (e.g. Jackson et al. 2015).  

Slowdown of the AMOC (seen as a precursor to switching of the circulation and therefore rapid 

regional cooling) is reported by Caesar et al (2018) who used CMIP5 model projections of sea 

surface temperatures in the North Atlantic to compare with observations. They show that this 

pattern is consistent with slowdown of AMOC since the end of the 19th century. This is supported 

by Piecuch (2020) who reconstructed the behaviour of the Florida current (an important 

component of AMOC) since 1909 and shows that it is weaker now than for this time period. This 

reduction in northward heat transport is seen as sufficient to explain the ‘cold blob’.  

While weakening of the AMOC will probably cool NW Europe significantly, even during a period 

of rapid global warming (Weijer et al 2020), model uncertainty is significant(Lobelle et al. 2020; 

Jackson et al. 2023). IPCC AR6 reports that “The Atlantic Meridional Overturning Circulation will 

very likely decline over the 21st century for all SSP scenarios. There is medium confidence that 

the decline will not involve an abrupt collapse before 2100. For the 20th century, there is low 
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confidence in reconstructed and modelled AMOC changes because of their low agreement in 

quantitative trends”. For CMIP6 models, “projected AMOC decline is also associated with a 

decline in NADW formation (Reintges et al., 2017; Weijer et al., 2020). The link between AMOC 

and NADW formation appears insensitive to the large range in model bias in NADW water mass 

characteristics”.  

Despite the intermodal spread of overturning strength in CMIP6 is as large (10-31 Sv) as in CMIP 

5, and deep convection errors are still large in CMIP6 and the shallow bias in AMOC persists 

(Weijer et al., 2020). IPCC reports a large discrepancy between modelled and reconstructed 

AMOC in the twentieth century and report low confidence over the realism of the 20th century 

modelled AMOC response. 

c) Northern Hemisphere Storm Tracks 

There are two main northern hemisphere midlatitude storm tracks, one across the North Pacific 

Ocean and one across the North Atlantic Ocean. The storm tracks comprise individual 

midlatitude cyclones which are key to the transport of heat and also prime determinants of the 

precipitation regime. The heat and pressure gradient across the midlatitude atmosphere controls 

the location of the storm track since the storms exist to undo the gradient and derive their energy 

from that gradient.  

In a climate change setting there are multiple controls on the heat gradient and therefore on the 

location of the storm track. Some controls lead to a poleward shift in the storm track, were they 

to operate individually. Other controls lead to an equatorward shift. Adjustments which lead to a 

poleward shift include the expansion of the tropical circulation system or Hadley Cell (Grise and 

Davis 2020), reduction in the cross latitude surface temperature gradient (e.g. Brayshaw et al 

2008), increased lower troposphere isentropic slope (Butler et al 2011), increased tropopause 

height (e.g. Lorenz and DeWeaver 2007) and increased Rossby phase speeds (e.g. Chen and 

Held 2007).  

Changes in subtropical stability and increased upper tropospheric air temperatures (e.g. 

O’Gorman and Singh, 2013) together with a weakened Atlantic overturning circulation lead to an 

equatorward advance of the storm track. Any model simulation needs not only to compute each 

of these effects precisely and accurately but also needs to enable the same interaction between 

these effects as is seen in the real world (e.g. Priestley et al. 2023). This is very difficult to 

achieve. The upshot is that for near term projections of the northern hemisphere storm tracks 

there is only medium confidence (Harvey et al. 2020). 
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d) Carbon Cycle 

Anthropogenic emissions of carbon to the atmosphere are prescribed by the emissions 

scenarios. Uptake of the carbon by the ocean, land surface and vegetation needs to be modelled, 

as does the release of further carbon such as methane from tundra areas (e.g., Koven et al. 

2013). Uptake on forest stores such as the Amazon also hinge on the regional climate response 

to warming, particularly precipitation. In some scenarios there is considerable carbon emission 

from a drying Amazon (e.g., Phillips et al 2009; Carvalho et al. 2020; Ritchie et al. 2022) and a 

warming tundra (e.g., Knowles et al. 2019; Plaza et al. 2019; Feng et al. 2020) . 

 

e) Arctic sea ice  

Climate change in the Arctic region has considerable impacts on mid-latitude Northern 

Hemisphere weather and is therefore of great interest to planners and climate adaptation 

specialists. Enhanced warming in the Arctic region (2-3 times the GMST rise) is known as 

Arctic Amplification and this is seen in observations and model projections (Senftleben et al. 

2020). As a result, late summer (September) sea ice extent has reduced by about 13% per 

decade (e.g., Taylor et al., 2017; 2022) and September sea ice volume has declined by >70% 

since the early 1980s (e.g., Kwok 2018; Stroeve et al., 2014; Cai et al. 2021). This means that 

the Arctic Ocean is likely to become sea ice–free in late summer for the first time before 2050 

and this is the case for all emission scenarios under consideration.  

 

While the satellite-based observations of decline in Arctic sea ice over the period 1979-2019 

suggest this decline is linearly determined by global mean surface temperature, the model 

projections show considerable variability (see Taylor et al 2022). Perhaps the key uncertainty 

in assessments of polar climates is the snow and ice albedo feedback and its interaction with 

cloudiness (e.g., Screen 2017; Yu et al. 2021). The former is probably responsible for the inter-

model spread in Arctic warming and sea ice extent across numerous inter-model comparisons 

(Holland and Bitz 2003). The dynamic features of sea ice include melt ponds, sea ice thickness 

and floe size and these are too small to be resolved in climate models and therefore have to be 

parameterised. 

 

Other model uncertainties include the inability to distinguish between those processes driving 

Arctic Amplification related to warm and moist air transport from the mid-latitudes to the Arctic 
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(e.g. Peng et al. 2020). As a result, changes we are seeing now in mid-latitude weather and 

climate could be both a cause and an effect of Arctic change. There are also discrepancies 

between observational data which show strong Arctic to mid-latitude climate connections, while 

models suggest much weaker relationships. Some researchers caution that while the influence 

of Arctic climates on mid-latitude climate may change, this might just be an artefact of the poor 

ability of climate models to capture the amplitude of these processes (Screen 2017).  

Overall, recent studies (e.g., Bonan et al 2021) argue that for projections of early autumn 

(September) sea ice area (SIA) climate model structure contributes 30-80% of the total 

uncertainty to 2100. For March this changes to 40-80%. Internal variability contributes up to 60% 

of the total uncertainty in all seasons and therefore has a major influence on model projections 

at long lead times. This contrasts with climate model projections on other aspects of the climate 

system (e.g., global and regional temperatures and precipitation) where model uncertainty and 

internal variability reduce over time as a proportion of total uncertainty. Scenario uncertainty in 

SIA varies across the seasons; its effect on summer projections is high (accounting for 70% of 

total uncertainty) while in winter this reduces significantly. Bonan et al (2021) suggest this is 

because the “smaller contribution of scenario uncertainty to total uncertainty in winter likely 

reflects the fact that model uncertainty is so large that it diminishes scenario uncertainty in 

relative terms”. 

 

5. Dealing with Model Uncertainty 

a) Model Evaluation and Development 

Model development is a continuous and well-resourced process in the main modelling centres. 

It is also reasonably competitive among the main modelling groups. For every model version that 

is released for an exercise such as CMIP, there will be numerous sub-versions of the model and 

numerous categories of code aimed at improving the model performance. Models are typically 

evaluated against observations of the contemporary climate. A recent breakthrough in this 

process is the development of the ESMvalTool (https://www.esmvaltool.org/) which is a 

standardised assessment process applied to models used in CMIP and IPCC. ESMValTool 

provides the first cross-model benchmarking on model performance. The metrics against which 

the models are assessed increasingly use processes as a basis for assessing the workings of 

the model rather than simply standardised output such as temperature. Evidence shows that 

models develop incrementally from one CMIP exercise to the next. However, there are key model 
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errors that have been in place for decades, such as the difficulty that coupled models have in 

simulating marine stratus cloud in the subtropics. Attempts to rectify these kinds of errors often 

include focused field campaigns such as ORACLES and CLARIFY which aim to retrieve 

observations that can be used to confront the model simulations. Without such observations it 

can be impossible to know what the models should be simulating. 

b) Assessing model output and model selection 

Hawkins and Sutton (2009) argue that uncertainties associated with internal variability and model 

uncertainty dominates the total uncertainty (see Figure 1). Internal variability might not be 

reducible by any meaningful amount, but reducing model uncertainty would pay dividends for 

planners and would be possible given better observational data and improvements in model 

structure. Reducing this uncertainty would also lead to better regional predictions and this is 

certainly the case for decadal timescales and regional space scales. They end by arguing that 

“Because the costs of adaptation are expected to be very large, the clear implication (of their 

work) is that reducing uncertainty in climate predictions is potentially of enormous economic 

value” (Hawkins and Sutton 2009, p. 1102 italics added).  

The simplest method for dealing with multiple model simulations is to produce a mean of all the 

simulations – the ensemble mean (Murphy et al. 2004). This method dominated early climate 

change research. The underlying assumption is that the forced signal common to model 

responses will be retained while the noise peculiar to any one simulation will be averaged out.  

Although it is still used, a number of alternative approaches have evolved over the last 20 years. 

These included attempts to weight variables such that not all models were treated as having the 

same capability in creating the ensemble mean. Model weighting seems defensible in instances 

where one model can be shown to have a superior ability to simulate a relevant feature compared 

with another. The difficulty lies in that there is no consensus on what criteria to use to weight a 

model. One model may seem superior to another when judged according to how realistic its 

large-scale simulation of the global circulation is. But that same model may reveal an unusually 

poor simulation of the regional climate relevant to a particular application.  

Decisions about which model to select are most relevant when regional model simulations are 

required for a particular application since regional models have to be forced by the evolving fields 

from a particular global model. There is seldom sufficient computing power to use all available 

global models to force a regional model.  



17 
 

Process-based model evaluation has been a feature of climate model evaluation for the last 5 

years. The approach here is to establish how and why a climate model simulates a particular 

climate feature or change in future climate. Models which simulate climate features or future 

climate by means of processes which are deemed unrealistic are then regarded as outliers which 

can reasonably be ignored. This approach to narrowing the uncertainty range can prove to be 

extremely useful. Instead of building safeguards in infrastructure, for example, to accommodate 

an extreme outlier which stems from a particular climate model, it may be possible to 

demonstrate that the model simulation of that outlier is unrealistic.  

For many climate impacts such as assessing hurricane impacts and ENSO, policymakers require 

medium timescale climate forecasts rather than projections out to the end of the century similar 

to those evaluated by IPCC. Such decadal forecasts are difficult to achieve because the forced 

climate signal (driven by GHG) is not much larger than the internal variability (Meehl et al. 2009) 

and this is especially true for sub-continental scales and for precipitation change (e.g. Pastén-

Zapata 2022; Nourani et al. 2022). Important questions remain before such decadal forecasts are 

achievable. One of the most crucial is whether enough is known about ocean variability (e.g. 

Pacific Decadal Oscillation, Atlantic Meridional Overturning) to produce an accurate enough 

initial state to the climate model to predict its evolution, suggesting that IC uncertainty plays an 

important role at near-term climate prediction in the same ways as it does in weather forecasting.  

c) How to quantify and reduce uncertainty  

 

Some uncertainties can be reduced. For instance, internal climate variation is an intrinsic 

component of uncertainty and can be assessed probabilistically but cannot be reduced (see 

Figures 4,5,6). Model response uncertainty could be reduced, but probably only in a Bayesian 

context (see Sexton et al. 2012). They produce a concept called discrepancy, which reflects 

the “degree of imperfection in the climate model i.e., it measures the extent to which missing 

processes, choices of parameterisation schemes and approximations in the climate model 

affect our ability to use outputs from climate models to make inferences about the real system” 

(Sexton et al. 2012). This is another way of assessing model error and model uncertainty; 

failure to assess this increases the risk of making over-confident predictions. 

Finally, there have been a number of initiatives to produce the observational and historical data 

with which to test climate models against known unforced variation, and to better assess the 

nature of natural variability. For instance, more information is required on the magnitude-

frequency relationships of major floods than is obtained by relatively short instrumental records 
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(Longfield and Macklin 1999; Macklin and Rumsby 2007; Jones et al. 2010; CCRM 2011; 

Longfield et al. 2019).  

In the future we will have models with much higher resolution. However, despite improvements 

in our understanding of small-scale physical interactions in climate systems there are still major 

problems in parameterising poorly-resolved processes such as gravity waves, convection and 

boundary layer processes. As a result, there are moves towards developing climate simulations 

at between 1 kilometre-scales (e.g., the Icosahedral Non-hydrostatic (ICON) model (Miyamoto 

et al. 2013; Neumann et al. 2019) to 4 km scales (e.g. Bretherton and Khairoutdinov 2015).  

Overall, Giorgi (2010) argues that: 

1. For late 21st century mean climate change projections the greatest sources of 

uncertainty are associated with emission/concentration scenarios and inter-model 

(AOGCM) configuration differences. 

2. For early 21st century projections, the scenario uncertainty becomes secondary, and the 

contribution of internal model variability becomes of primary importance. 

3. The contribution of internal variability increases when going from the global to the 

regional scale and it increases for higher order climate statistics. 

4. Systematic model biases do not appear to strongly influence the projected changes in 

the majority of temperature and precipitation regional cases analysed. 

5. In general, uncertainty is greater at the regional than the global scale. 

6. The contribution of the different uncertainty sources vary with temporal and spatial 

scales. 

d) The view from IPCC AR6 

Given known and unknown uncertainties in climate model projections, IPCC AR6 has based 

assessments of future climate on numerical projections and a number of additional lines of 

evidence. However, they still caution that there is no clear way to weight multi-model 

assessments, and as a result, argue that expert judgement should be added routinely to the 

assessments (Masson-Delmotte et al. 2021).  

It is known that CMIP6 ensembles project higher global near surface air temperature (GSAT) 

by the end of this century than CMIP5 because Equilibrium Climate Sensitivity (ECS) and 

Effective Radiative Forcing (ERF) are both higher in CMIP6 ensembles (e.g., Zelinka et al. 

2020; Tebaldi et al. 2021). 
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In addition, in IPCC AR6 (2021, Chapter 4) the assessment of model uncertainty uses other 

lines of evidence. These include: 

1.  The CMIP6 multi-model ensemble (Eyring et al., 2016).  

2. Single-model large initial-condition ensembles (e.g., Kay et al. 2015) and combinations 

of control runs with CMIP transient simulations (e.g., Olonscheck and Notz, 2017) to 

assess internal variability.  

3.  Assessed best estimates, likely, and very likely ranges of ECS and TCR, from process 

understanding, warming in the instrumental record, assessment of palaeotemperatures 

and emergent constraints (see IPCC AR6 Chapter 7). , The range of ECS and 

Transient Climate Response (TCR) are converted into GSAT ranges using a simple 

energy balance model (EBM see Held et al., 2010).  

4.  Model independence has also been used. This is asserted a priori and based on 

shared model components for atmosphere, ocean, land surface, and sea ice of CMIP5 

models (Boé, 2018). Assuming model dependence means that those models with the 

same atmosphere or ocean component are the same model (Maher et al., 2021). 

Down-weighting those models sharing such components has a large impact on 

projections of ENSO (Jin et al 2008; Capotondi et al. 2013; Maher et al., 2021), but low 

impact on the ensemble mean and range of GSAT change this century. This diagnosis 

has not been carried out so far on CMIP6 models. 

5. Using past observations of climate to assess current and future model performance. 

This has used simulations of GSAT in CMIP6 and has reduced model uncertainties 

considerably (e.g., Liang et al., 2020) and produced ice-free September conditions in 

the Arctic before 2050 (e.g., Olonscheck and Notz 2017). 

6. Using kriging (linear inverse methods) to combine GSAT record since 1850 with the 

CMIP 6 historical simulations to better constrain projections has combined the entire 

GSAT record since 1850 with  the CMIP6 historical simulations to produce constrained 

projections for the 21st century (Ribes et al. 2021).  

7. Emergent constraints have been used with the CMIP5 and CMIP6 ensembles and have 

led to reduced GSAT ensemble range (e.g., Nijsse et al. 2020). 

8. Using climate predictions initialized from recent observations and the Decadal Climate 

Prediction Project (DCPP) contribution to CMIP6 (e.g., Sospedra-Alfonso and Boer 

2020).  
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6. Conclusions 

Despite the focus on climate model uncertainty given here, it is important to state that climate 

models have been remarkably successful in providing credible large-scale climate projections 

for many years. For instance, they predicted Arctic amplification; the cooling of the stratosphere 

associated with GHG forcing; the differential response of land and oceans to warming and the 

effects of stochastic events such as the cooling associated with volcanic eruptions such as 

Pinatubo (e.g., Robock 2003). However, the issue of climate model uncertainty needs to be 

grasped by all users of climate model projections and these include adaptation planners, 

catastrophe modellers, infrastructure and asset managers.  

With better assessment of past changes in climate, the drivers that forced these and the impacts 

that followed, we should be able to refine climate models so that future projections are made 

more robust. Understanding how climate models work, are developed, and projection uncertainty 

should also improve climate change resilience for society. What should be avoided are business 

decisions being made on the basis of incomplete understanding of climate model projections. 

For instance, several scientists have in the past made simplistic assertions about the likely nature 

of future climate in the UK, and climate sensitive sectors should be wary of such 

pronouncements. Clearly a better understanding of climate model uncertainty would help make 

better risk management decisions and these will need to be robust in the face of these 

uncertainties. Inevitably this will increase costs. Such costs can be controlled through earlier and 

deeper reductions of greenhouse gases (mitigation) – it is likely they will be considerably higher 

if they are delayed further.  
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Figure 1: Sources of uncertainty in temperature and precipitation projections.  Global decadal c) 
and European decadal DJF (d) temperature projections are compared with Asian decadal (e) 
JJA precipitation projections and European DJF precipitation projections (f).  These are all 
expressed as a fraction of the total variance (from Hawkins and Sutton 2009).  
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Figure 2. Improvements in climate models in resolution, complexity and representation of key 
variables.  

(a) Evolution of model horizontal resolution and vertical levels.  
(b) Evolution of inclusion of processes and resolution from CMIP Phase 3 (CMIP3) to CMIP6  
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Figure 3. Anomaly correlation of ECMWF 500hPa height forecasts 
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Figure 4. The cascade of uncertainty (from Wilby and Dessai 2010). This proceeds from a variety 
of socio-economic and demographic pathways to GHG concentrations, outcomes from global 
and regional climate models, local impacts on human and natural systems and adaptation 
responses. The increasing number of triangles represent the increasing number of permutations 
and therefore increasing envelope of uncertainty.  
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Figure 5. The ‘cascade of uncertainty’ in global mean surface temperature from the CMIP5 
simulations for different time periods as labelled. The three levels of the pyramid highlight the 
uncertainty due to the choice of RCP, GCMs and realisation of climate variability. 
Unfortunately, not all the simulations have multiple realisations, resulting in a vertical line in the 
lowest layer. The intersection on the top row for each time period is the multi-scenario, multi-
model, multi-realisation mean. 
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Figure 6. Changes in GSAT (left), northern South America (region NSA) temperature change 
(middle), and East Asia (region EAS) summer (JJA) precipitation change (right) are shown for 
two time periods (2041–2060, top, and 2081–2100, bottom). The SSP-radiative forcing 
combination is indicated at the top of each cascade at the value of the multi-model mean for 
each scenario. This branches downwards to show the ensemble mean for each model, and 
further branches into the individual ensemble members, although often only a single member is 
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available. These diagrams highlight the relative importance of different sources of uncertainty 
in climate projections, which varies for different time periods, regions and climate variables.  
 
For global mean temperature, the role of internal variability is small, and the total uncertainty is 
dominated by emissions scenario and model response uncertainties. Note that there is 
considerable overlap between individual simulations for different emissions scenarios even for 
the mid-term (2041–2060). For example, the slowest-warming simulation for SSP5-8.5 
produces less mid-term warming than the fastest-warming simulation for SSP1-1.9. For the 
long-term, emissions scenario uncertainty becomes dominant (from IPCC AR6 WG1). 
 
 
 
 
 
 

 

 

 

 

 




