

REGULATORY OBSERVATION RESOLUTION PLAN RO-UKHPR1000-0006 Page: 1 / 12

GDA-REC-GNSL-005810

Rev.: 1

REGULAT	ORY OBSERVATION Resolution Plan
RO Unique No.:	RO-UKHPR1000-0006
RO Title:	Avoidance of Fracture Demonstration
Technical Area(s)	Structural Integrity
Revision:	Rev 1
Overall RO Closure Date	2021-04-30
(Planned):	
Linked RQ(s)	RQ-UKHPR1000-0057/RQ-UKHPR1000-0058/RQ-UKHPR1000-0059/
	RQ-UKHPR1000-0082/RQ-UKHPR1000-0110/RQ-UKHPR1000-0113/
	RQ-UKHPR1000-0145/RQ-UKHPR1000-0452
Linked RO(s)	-
Related Technical Area(s)	9. Fault Studies
	11. Human Factors
	12. Internal Hazards
	13. Management of Safety Quality Assurance
	14. Mechanical Engineering
Other Related Documentation	-

Scope of Work

Background

ONR's structural integrity discipline covers the engineering assessment of the integrity of metallic components and structures. The ONR has specific expectations if the consequences of postulated gross failure are discounted. In these situations the ONR expects a highest reliability claim. For UK HPR1000, this class of structures and components is termed as High Integrity Component (HIC). For HIC it needs to be inferred that the likelihood of gross failure is extremely low or that gross failure can be discounted.

However, the structural integrity demonstration for HIC structures and components is an onerous route to constructing an adequate safety case, with an in-depth explanation of the measures over and above normal practice expected to justify the claim that gross failure can be discounted. In order to achieve this goal, and taking cognisance of existing good practice, along with the approaches adopted in previous GDA projects, an avoidance of fracture demonstration is expected for HIC structures and components. The aim is to demonstrate that the component enters service without structural defects of concern and that the structure or component is tolerant of defects during life with an appropriate margin.

GOCGN Steps General Nuclear System

REGULATORY OBSERVATION RESOLUTION PLAN RO-UKHPR1000-0006

GDA-REC-GNSL-005810

Rev.: 1

For UK HPR1000, the claim of avoidance of fracture demonstration has been presented in the submitted Chapter 17 Structural Integrity (SI) of Pre-Construction Safety Report (PCSR) V0 (Ref. 1), and along with a series of reference documents covering the key elements of the case and relevant methodologies:

- Safety Case Methodology for HIC and SIC Components (Ref. 2),
- Method and Requirements of Structural Integrity Classification (Ref. 3),
- Equipment Structural Integrity Classification List (Ref. 4),
- Weld Ranking Procedure (Ref. 5),
- Application of Weld Ranking Procedure (Ref. 6),
- Defect Tolerance Assessment methodology for HIC Components (Ref. 7),
- System and Components loadings for Defect Tolerance Assessment (Ref. 8),
- Strategy and Plan of Non-Destructive Testing for High Integrity Component (Ref. 9),
- Inspection Qualification Strategy for High Integrity Components (Ref. 10).

At the beginning of Step 3, RO-UKHPR1000-0006 (Avoidance of fracture demonstration) was raised by ONR in response to specific gaps in the generic safety case, identified during their Step 2 assessment. One of the main purposes of the RO is to provide advice and guidance to the RP on ONR's expectations regarding the provision of a suitable and sufficient justification of the approach, clarification of the route to the arguments and evidence and by outlining the specific expectations for each of the contributing elements (or key inputs) in the avoidance of fracture demonstration. A final aim of the RO was to highlight to the RP the importance of developing processes to integrate the fracture analyses, qualified inspection and material properties in underwriting the avoidance of fracture demonstration for HIC.

In order to address RO-UKHPR1000-0006 and to achieve ONR's expectations, this resolution plan is developed to outline the programme of work for the avoidance of fracture demonstration for HIC structures and components in UK HPR1000. The work to address each action of the RO is detailed below.

Abbreviations and Acronyms

CAE	Claim-Argument-Evidence
DSM	Defect Size Margin
DTA	Defect Tolerance Assessment
GNS	General Nuclear System Limited
HIC	High Integrity Component
NDT	Non-Destructive Testing
ONR	Office for Nuclear Regulation

GOCGN Steps General Nuclear System

REGULATORY OBSERVATION RESOLUTION PLAN RO-UKHPR1000-0006

Rev.: 1

Page: 3 / 12

GDA-REC-GNSL-005810

PCSR	Pre-Construction Safety Report
RO	Regulatory Observation
RP	Requesting Party
SI	Structural Integrity
SIC	Structural Integrity Class
SSCs	Structures, Systems and Components
UK HPR1000	The UK Version of the Hua-long Pressurized Reactor
UK	United Kingdom of Great Britain and Northern Ireland

Scope of work

In accordance with the regulatory observation actions of RO-UKHPR1000-0006, the scope of work in this resolution plan covers three aspects:

- 1) the role and importance of the avoidance of fracture demonstration to the UK HPR1000 safety case.
- 2) identification of the contributing elements of the avoidance of fracture and a development of a process for the reconciliation of these elements.
- 3) justification of the inputs used in the defect tolerance assessments.

On the basis of the documentation submitted prior to Step 3 and the planned step 3 and step 4 submissions, and taking cognisance of the regulatory expectations, the following documents will be updated or produced to address this RO and achieve ONR's regulatory expectations.

- 1) PCSR Structural Integrity Chapter 17 V1
- 2) Safety Case Methodology for HIC and SIC Components
- 3) Avoidance of Fracture Reconciliation Strategy
- 4) Avoidance of Fracture Reconciliation for RPV Flange-nozzle Shell to Core Shell Weld
- 5) Avoidance of Fracture Reconciliation for RPV Inlet Nozzle to Safe End Weld
- 6) GDA technical justification for RPV Flange-nozzle Shell to Core Shell Weld
- 7) GDA technical justification for RPV Inlet Nozzle to Safe End Weld
- 8) Defect Tolerance Assessment of RPV Core Shell to Transition Ring Weld
- 9) Defect Tolerance Assessment of Flange-nozzle Shell to Core Shell Weld
- 10) Defect Tolerance Assessment of RPV Inlet Nozzle to Safe End Weld

GOCGN Sepression

REGULATORY OBSERVATION RESOLUTION PLAN RO-UKHPR1000-0006

GDA-REC-GNSL-005810

Rev.: 1

This Resolution Plan describes the current plan to address RO-UKHPR1000-0006. However, as the work develops, it may be necessary to adjust or update this plan to align with the latest review schedule in agreement with the regulators.

Deliverable Description

RO-UKHPR1000-0006.A1 – Role and importance of the avoidance of fracture demonstration to the UK HPR1000 safety case

The RO action 1 states that:

In response to this ROA, GNS should provide :

- an explanation of how the avoidance of fracture demonstration will be used within the generic safety case to support the claim that failure can be discounted from the design basis.
- a clear description of how the safety case is supported by the claims, arguments and evidence generated as part of the avoidance of fracture demonstration.
- > ONR considers that the response to this Action should also include information on:
 - the location of the claim within the safety case;
 - the prominence this claim has within the safety case; and
 - the auditable trail between the claim, arguments and evidence.

Resolution Plan

For Action 1, the submitted PCSR chapter 17 V0 has relevant information for HIC components, with the avoidance of fracture demonstration referenced in sub-claim 2. In addition, the relevant main contributing elements, such as Defect Tolerance Assessment (DTA), high reliability NDT and material properties, and the basic relationships among them are also described in sub-chapter 17.6.1.2.

However, the RP acknowledges that there are still some gaps between the delivered submissions and regulatory expectations, e.g. absence of clear description of the evidence to support the avoidance of fracture demonstration and which specific safety cases will be developed to support this sub-claim in format of arguments and evidence.

Therefore, the RP will update the *Pre-Construction Safety Report Chapter 17 Structural Integrity* (Rev.V1) to respond to this action.

This document will be updated by 10th January 2020 to reinforce the relevant contents of the avoidance of fracture demonstration. The main aspects are:

- revise the chapter route map of structural integrity to highlight the location of avoidance of fracture demonstration within the safety case.
- more clearly describe arguments and evidence of avoidance of fracture demonstration, and specify which safety cases will be or have been generated to support this sub-claim in format of arguments

REGULATORY OBSERVATION RESOLUTION PLAN RO-UKHPR1000-0006

GDA-REC-GNSL-005810

and evidence.

Meanwhile, for the **Safety Case Methodology for HIC and SIC Components** (Rev.C), the objective of this document is to guide the designer to develop Component Safety Reports to demonstrate structural integrity of SSCs, which cover HIC and SIC-1/SIC-2/SIC-3 components. The Revision C of this document will be updated to reflect the expectations from ONR by 30th April 2019. The main aspects are:

- revise the chapter 3.1 and Appendix A to present the logical relationship between structural integrity classification and safety cases.
- revise the Appendix C 'Avoidance of Fracture' to detail the role of avoidance of fracture demonstration, main contributing elements and the logical relationship with structural integrity demonstration of HIC component.
- revise the Chapter 4 and Appendix B to more clearly present arguments and evidence of avoidance of fracture demonstration, and highlight the location of avoidance of fracture demonstration in the chapter route map of structural integrity.
- using the identified arguments and evidence, the logical relationship flowchart of safety cases to support the avoidance of fracture demonstration will be developed in the format of claims, arguments and evidence (CAE). The main safety case documentation to underpin the main inputs include:

General:

- o Component Safety Reports of HIC Components
- o Method and Requirements of Structural Integrity Classification
- Equipment Structural Integrity Classification List
- Weld Ranking Procedure
- Application of Weld Ranking Procedure
- o Avoidance of Fracture Reconciliation Strategy
- o Avoidance of Fracture Reconciliation Process between Contributing Elements

Contributing element 1: (Defect Tolerance Assessment (DTA) related documentation)

- o Defect Tolerance Assessment Methodology for HIC Components
- System and Components Loadings for Defect Tolerance Assessment
- Defect Tolerance Assessment Reports of Limiting Locations

Contributing element 2: (High Reliability NDT related documentation)

NOT PROTECTIVELY MARKED

CGN Stedf	REGULATORY OBSERVATION RESOLUTION PLAN	Rev.: 1	Page: 6	/ 12						
General Nuclear System	RO-UKHPR1000-0006	GDA-REC-GNSL-005810								
o Inspe	ection Qualification Strategy for High Integrity Components									
o Acce	ss and Inspectability Assessment									
∘ Re-g	rouping Application of Weld Ranking Procedure									
o NDT	Inspection Specifications of Limiting Locations									
o GDA	Technical Justifications of Limiting Locations									
Contributing	element 3: (Material Property related documentation)									
o Supp	lementary Toughness Test Requirements of Materials for H	IC Componen	ts							
RO-UKHPR1000-000	6.A2 –Identification of the contributing elements of the	avoidance o	f fracture a	and						
their relationships										
The RO action states	that:									
In response to this RC the strategy f explanation of the reconcilia of fracture jus o Confi tolera avoid o The p of fra > ONR conside o The o proce the o docu o Exan	DA, GNS should provide : for the creation of the avoidance of fracture demonstration, we of the interrelationships between the contributing elements. tion strategy the RP will develop and implement to justify the stification. This should include, but not be limited to: irmation that appropriate conservatisms are being used in e ance assessment, inspection qualification or material proper lance of fracture justification. process for the resolution of conflicts between the contributin acture justification. ers that the response to this Action should include information documented strategy for creating the avoidance of fracture of esses and approach, which provide information on the object verall UK HPR1000 safety case and how this will be cascad ments.	which will inclu e adequacy of each input (e.g rty assumption ng elements of on on: demonstration ctives, scope a ded into individ	ide an expli f the avoida c defect ns) to the f the avoida f the avoida and purpose dual	icit nce nce ed e for						
Resolution Plan										
In the avoidance of Material Property) are and high reliability NI properties are taken fr the licensing stage of reconciliation process	fracture demonstration, three contributing elements (DTA inter-related and their interaction is shown in Figure 1. In OT (GDA TJ) are normally carried out in parallel. For the rom codes and direct testing of material properties (fracture of the project i.e. post GDA. Adequate margin is norma where the inputs (namely DTA results, capability of GDA TJ	, High Reliat the UK HPR1 DTA, conser toughness) a lly demonstra and material	pility NDT, a 000 GDA, E vative mate re reserved tted through properties)	and DTA erial I for h a are						
	NOT PROTECTIVELY MARKED									

Figure 1 Inter-relationship of contributing elements

The RP has issued **Safety Case Methodology for HIC and SIC Component** (Rev C) in RO-UKHPR1000-0006.A1 to provide preliminary information relating to the contents and inter-relationships between the elements mentioned above. Furthermore, an outline of the reconciliation process to resolve potential conflicts between these elements was presented in **Pre-Construction Safety Report Chapter 17 Structural Integrity** (Rev.V0) (Ref.1) as well.

However, the RP recognises that there are still some gaps between the delivered submissions and regulatory expectations, e.g. absence of clear explanation of the interrelationships between the contributing elements, and associated route or approach to reconciliation for the avoidance of fracture demonstrations.

The RP will therefore issue the *Avoidance of Fracture Reconciliation Strategy* (Rev.A) by 31st October 2019, which specifies a reconciliation strategy in the avoidance of fracture demonstration when conflicts between the DTA and GDA TJ exist. This strategy aims to ensure an adequate safety margin whilst maintaining sufficient conservatisms in the avoidance of fracture demonstration.

Meanwhile, the RP will give two examples whereby the reconciliation strategy is applied. The first example is reconciliation process for RPV Flange-nozzle Shell to Core Shell Weld, and the second example is reconciliation process for RPV Inlet Nozzle to Safe End Weld.

Consequently, the RP will issue the following documents for the first example:

A) Defect Tolerance Assessment of Flange-nozzle Shell to Core Shell Weld (Rev.A) by 30th July 2019

B) **GDA Technical Justification for RPV Flange-nozzle Shell to Core Shell Weld** (Rev.C) by 29th February 2020

C) Avoidance of Fracture Reconciliation for RPV Flange-nozzle Shell to Core Shell Weld (Rev.A) by 15st March 2020 GOCGN See System

GDA-REC-GNSL-005810

Rev.: 1

The following documents for the second example:

A) Defect Tolerance Assessment of RPV Inlet Nozzle to Safe End Weld (Rev.A) by 31st January 2020

B) GDA Technical Justification for RPV Inlet Nozzle to Safe End Weld (Rev.A) by 31st March 2020

C) Avoidance of Fracture Reconciliation for RPV Inlet Nozzle to Safe End Weld (Rev.A) by 31th December 2020

In addition, the RP will update the *Safety Case Methodology for HIC and SIC Components* to Rev D by 20th November 2019 to confirm whether there is adequate information to demonstrate how to carry out avoidance of fracture demonstration in UK HPR1000 safety cases, taking cognisance of the latest understanding and progress of avoidance of fracture demonstration during Step 3. The main developments as follows:

- revise Appendix C to detail the objective and scope of avoidance of fracture demonstration, specific requirements on contributing elements and the interrelationships between the contributing elements.
- revise Chapter 4 and Appendix B to more clearly identify and detail the arguments and evidence to underpin the avoidance of fracture demonstration, and to specify how these arguments and evidence are contained in individual documents. This will be expressed through a logical relationship flowchart of safety cases in a CAE format.
- summarise the reconciliation strategy applied to resolve potential conflicts between the contributing elements of avoidance of fracture demonstration to be added to Appendix C using the current status of safety case and delivery plan.

RO-UKHPR1000-000N.A3 – Justification of the inputs used in the defect tolerance assessments

The RO action states that:

In response to this ROA, GNS should provide:

- the generic inputs to be used within the proposed defect tolerance assessments. This should include, but not be limited to, a clear description of the source of the inputs, its veracity and why the inputs are consistent with the level of reliability being sought in the avoidance of fracture demonstration.
- > ONR considers that the response to this Action should include, but not be limited to, information on:
 - Limiting design transients and loads;
 - Operation loading profile and combination of transients;
 - Material properties (including the impact of degradation mechanisms);
 - Defect locations and geometries.

Resolution Plan

The generic inputs used in proposed DTA report covers defect locations, geometries, various types of loadings, material properties, etc.

The Systems and Components Loadings for Defect Tolerance Assessment (Ref. 8) covers the loadings

REGULATORY OBSERVATION RESOLUTION PLAN RO-UKHPR1000-0006 Page: 9 / 12

GDA-REC-GNSL-005810

Rev.: 1

description, including permanent loads, transients loads, seismic loads, etc. Further detailed information, such as operation loading profile, will be stated in each DTA report. Moreover, these DTA reports will document the conservative assumptions used to enable proportionality with the level of reliability being sought in the avoidance of fracture demonstration. These DTA reports also will include the material properties, which include the impact of degradation mechanisms.

The defect locations are derived from *Application of Weld Ranking Procedure* (Ref. 6), and detailed description of defect locations and geometries will be illustrated in each DTA report. *Defect Tolerance Assessment of RPV Core shell to Transition Ring Weld* (Rev.A) will be issued by 30th June 2019, *Defect Tolerance Assessment of Flange-nozzle Shell to Core Shell Weld* (Rev.A) will be issued by 30th July 2019, and *Defect Tolerance Assessment of RPV Inlet Nozzle to Safe End Weld* (Rev.A) will be issued by 31st January 2020.

The development and updating of the four key documents outlined in the response to Actions 1, 2 and 3 together with the timescales to submit these documents are given in schedule at Appendix A. A period to allow ONR consideration of the technical reports and to close-out the RO is also included in the schedule.

Impact on the GDA Submissions

The PCSR Chapter 17 (Rev. V1) and the following supporting submission documents will be involved in this RO.

GDA Submission Document	Related ROAs	Planned schedule for submission
Pre-Construction Safety Report Chapter 17 Structural Integrity (Rev. V1)	ROA1	10 th January 2020
Safety Case Methodology for HIC and SIC Components (Rev. C)	ROA1	30 th April 2019
Avoidance of Fracture Reconciliation Strategy (Rev. A)	ROA2	31 th October 2019
Defect Tolerance Assessment of Flange-Nozzle shell to Core Shell weld (Rev. A)	ROA2 and ROA3	30 th July 2019
GDA Technical Justification for RPV Flange-nozzle Shell to Core Shell Weld (Rev. C)	ROA2	29 th February 2020
Avoidance of Fracture Reconciliation for RPV Flange-nozzle Shell to Core Shell Weld (Rev. A)	ROA2	15 th March 2020
Defect Tolerance Assessment of RPV Inlet Nozzle to Safe End Weld (Rev. A)	ROA2 and ROA3	31 th January 2020
GDA Technical Justification for RPV Inlet Nozzle to Safe End Weld (Rev. A)	ROA2	31 th March 2020

	REGULATORY OBSERVATION RESOLUT	Rev.: 1	Page: 10	/ 12				
General Nuclear System	RO-UKHPR1000-0006		GDA-REC-	GNSL-005	310			
Avoidance of Fracture End Weld (Rev. A)	e Reconciliation for RPV Inlet Nozzle to Safe	ROA2	31 th Dece	mber 2020				
Safety Case Methodo	ology for HIC and SIC Components (Rev. D)	ROA2	20 th November 2019					
Defect Tolerance Ass Weld (Rev. A)	essment of RPV Core shell to Transition Ring	ROA3	30 th June 2019					
Timetable and Mileste	one Programme Leading to the Deliverables	5						
See attached Gantt Ch	art in APPENDIX A.							
Reference								
[1] Pre-Construction	Safety Report Chapter 17 Structural Integrity,	GHX0062001	7KPGB02GN	N, Revision	V0,			
Sep.2018.								
[2] Safety Case Meth	nodology for HIC and SIC Components, GH	K00100001DF	PFJ44DS, Re	evision A, N	lay.			
2018.								
[3] Method and Requ Mav.2018.	uirements of Structural Integrity Classification,	, GHX300000	02DOZJ03G	iN, Revisior	ηE,			
[4] Equipment Structu	ural Integrity Classification List, GHX30000003	DOZJ03GN,	Revision D, N	May. 2018.				
[5] Weld Ranking Proc	edure, GHX00100004DPCH03GN, Revision F	, May. 2019.						
[6] Application of We	d Ranking Procedure, GHX00100005DPCH03	3GN, Revisior	n D, May. 201	9.				
[7] Defect Tolerance	Assessment Methodology for HIC Components	s, GHX001000	066DPLX030	GN, Revision	n C,			
Jun. 2018.								
[8] System and Cor Revision A, Sep. 2018.	mponents Loadings for Defect Tolerance A	Assessment,	GHX001000	02DPLX44	GN,			
[9] Strategy and Plan	of Non-Destructive Testing for High Integrity	Component,	GHX001001	07DPCH03	GN,			
Kevision D, Jul. 2018.	nation Stratogy for High Integrity Component	CHX001000						
Jul. 2018.	cation strategy for migh integrity component,	GHAUU1000,	200707036		ı U,			

K HPR1000 GDA	NOT PROTECTIVELY MARKED			
GOCGN Stepf	REGULATORY OBSERVATION RESOLUTION PLAN	Rev.: 1	Page:	11 / 12
General Nuclear System	RO-UKHPR1000-0006	GDA-REC-	GNSL-0	05810

Rev.	Author	Scope/Reason of Revision	Date	Page
0		The first revision	2019.4.16	11

	Name	Company	Position	Signature	Date
Author		CGN	Designer of Material, Weld & NDT		2020. 1.8
		CGN	Topic Area Lead of Structural Integrity		2020.1.9
		CGN	Designer of Equipment Mechanics		2020.1.9
Reviewer		CGN	Vice head of Material, Weld & NDT Branch		2020.1.9.
		CGN	Director Designer of Equipment Mechanics Analysis Branch		20 <u>2</u> 0. of 09
		CGN	Chief Designer of NP department	1 And	JRIO.1.10.
		CGN	Project Deputy Chief Designer		22a.1.p
		CGN	Design Manager		١٠١] . مردر
Approver		CGN	Chief Engineer of Project		73 60. 1.16

	Name	Company	Position	Signature	Date
		General			
Reviewer		Nuclear	Structural Integrity PC		27/01/2020
		System			
		General			
Approver		Nuclear	СТО		22/11
		System			202/1/202

General Nuclear System

REGULATORY OBSERVATION RESOLUTION PLAN RO-UKHPR1000-0006

Rev.: 1

GDA-REC-GNSL-005810

APPENDIX A Gantt Chart

	Jan-19	Feb-19	Mar-19	Apr-19	May-19	Jun-19	Jul-19	Aug-19	Sep-19	Oct-19	Nov-19	Dec-19	Jan-20	Feb-20	Mar-20	Apr-20	May-20	Jun-20	Jul-20	Aug-20	Sep-20	Oct-20 Nov-20	Dec-20	Jan-21	Feb-21 Mar-2	21 Apr-2	21
RO Action 1 and RO Action 2 and RO Action 3																											
Development of deliverable - [Pre-Construction Safety Report Chapter 17 Structural Integrity] (Revison V1)																											
Submission of deliverable - [Pre-Construction Safety Report Chapter 17 Structural Integrity] (Revison V1)																											
Development of deliverable - [Safety Case Methodology for HIC and SIC Components] (Revison C)																											
Submission of deliverable - [Safety Case Methodology for HIC and SIC Components] (Revison C)																											
Development of deliverable - [Avoidance of Fracture Reconciliation Strategy] (Revison A)																											
Submission of deliverable - [Avoidance of Fracture Reconciliation Strategy] (RevisonA)																											
Development of deliverable - [Defect Tolerance Assessment of Flange-Nozzle shell to Core Shell weld](Revison A)																											
Submission of deliverable - [Defect Tolerance Assessment of Flange- Nozzle shell to Core Shell weld] (Revison A)																											
Development of deliverable - [GDA Technical Justification for RPV Flange-nozzle Shell to Core Shell Weld](Revison B)																											
Submission of deliverable - [GDA Technical Justification for RPV Flange-nozzle Shell to Core Shell Weld] (Revison B)																											
Development of deliverable - [Avoidance of Fracture Reconciliation for RPV Flange-nozzle shell to core shell weld] (Revison A)																											_
Submission of deliverable - [Avoidance of Fracture Reconciliation for RPV Flange-nozzle shell to core shell weld] (Revison A)																											
Development of deliverable - [Defect Tolerance Assessment of RPV Inlet Nozzle to Safe End Weld](Revison A)																											
Submission of deliverable - [[Defect Tolerance Assessment of RPV Inlet Nozzle to Safe End Weld] (Revison A)																											
Development of deliverable - [GDA Technical Justification for RPV Inlet Nozzle to Safe End Weld](Revison A)																											
Submission of deliverable - [GDA Technical Justification for RPV Inlet Nozzle to Safe End Weld] (Revison A)																											_
Development of deliverable - [Avoidance of Fracture Reconciliation for RPV Inlet Nozzle to Safe End Weld] (Revison A)																											_
Submission of deliverable - [Avoidance of Fracture Reconciliation for RPV Inlet Nozzle to Safe End Weld] (Revison A)																											
Development of deliverable - [Safety Case Methodology for HIC and SIC Components] (Revison D)																											
Submission of deliverable - [Safety Case Methodology for HIC and SIC Components] (Revison D)																											
Development of deliverable - [Defect Tolerance Assessment of RPV Core shell to Transition Ring Weld](Revison A)																											
Submission of deliverable - Defect Tolerance Assessment of RPV Core shell to Transition Ring Weld] (Revison A)																											
Assessment																											
Regulators Assessment																											
Target RO Closure Date																											

Page: 12 / 12